05 Aug

Energy in language 2008


01/05/2019 19:30

Energy in language

2008






Stochastic Meaning Theory 4
 
Energy of Language
For ZHANG Taiyan and Wenshi 1908
 
TANAKA Akio
1
Domain     Λ∈R3Substantial particles     N-number m-mass Particles are assumed to Newton dynamics.Place coordinate of particle i in N-number particles     riΛMomentum of particle     pi∈R3State at a moment     γ = (r1, …, rN, p1, …, pN)Set of state γ     PΛ, N ΛN ×R3N⊂R6NPΛ, N is called phase space.
2
Volume     VParticles     n- molEnergy     U  Parameter space     EPoint of E     ( U, V, n )3Subspace     PΛ, N ( U )Volume of PΛ, N ( U )     WΛ, N ( U )4Adiabatic operation      ( U, V, n ) →  ( U’, V’, n’ )Starting state of γPΛ, NEnding state of γPΛ’, NMap of time development    f5Volume of PΛ’, N ( U’ )     WΛ’, N ( U’ )Volume of (PΛ, N ( U ) ) is equivalent to WΛ, N ( U ).(PΛ, N ( U ) ) is subspace of PΛ’, N ( U’ )WΛ, N ( U ) ≤ WΛ’, N ( U’ )6Equilibrium state     ( U, V, n )Another equilibrium state       ( U’, V’, n’ )Two volume of equilibrium states are seemed to be one state at phase space     WΛ, N ( U ) WΛ’, N’ ( U’ )Operation of logarithm of equilibrium state at phase space     S ( U, V, n ) = k log WΛ, N ( U ) , (k ; arbitrary constant)7Phase space     2n- dimensionDifferential 2-form    ωLocal coordinate     qi, piω = ∑ni=1d qi, ∧dpiω is called symplectic form.2n- dimensional manifold     MPair    (M, ω)(M, ω) that satisfies the next is called symplectic manifold.(i) dω = 0(ii) ω≠0Phase space is expressed by symplectic manifold.8Hamiltonian systemCoordinate    ( q, p ) = (q1, …, qn, p1, …, pn )Phase space     R2nC1 class function     = (q, p, t ) = ( 1≤n ) = ( 1≤n )9An assumption from upper 8H : = Sentenceq : = Place where word existsp : = Momentum of wordt : = Time at which sentence is generated10Equilibrium state of sentence     HAnother equilibrium state of sentence     H’Adiabatic process of language     HH’Entropy of language     SHH’ ⇔ S (H ) ≤ S (H’ ) [References]Warp Theory / Tokyo October 24, 2004Quantum Warp Theory Warp / Tokyo December 31, 2005 

To be continued
Tokyo July 24, 2008
Sekinan Research Field of Language




 


Energy Distance Theory
 
Note 1
Energy and Distance
 
TANAKA Akio


1
Curve in 3-dimensional Euclidian space     : [0, 1] → R3Longitude of l     L ( ) = dt2Surface     SCurve combines A and B in S     lCoordinate of     φ : USCoordinate of     x1, x2φ = (φ1, φ2, φ3 )=φ ( x0 )=φ ( x1 )3Curve in S     : [0, 1] → R3Curve on U    x ( )Ω(x0, x1) = { l : [0, 1] → R| (0 ) = x0, l (1 ) = x}x(t)∈Ω(x0, x1)l ( ) =φ ( ( t ) )x ( 0 ) = x0( 1 ) = x1L ( ) = dt  =  dtgij is Riemann metric.4Longitude is defined by the next.L ( x, xˑ )  =  dt5Energy is defined by the next.E ( x, xˑ )  = I,j gi,j (x(t))i(t)j(t)dt62 E ( x, xˑ ) ≥ (L ( x, xˑ ) )27TheoremFor xΩ(x0, x1), the next two are equivalent.(i) E takes minimum value at x.(ii) L takes minimum value at x.8What longitude is the minimum in curve is equivalent what energy is the minimum in curve.9Longitude L is corresponded with distance in Distance Theory. 

[References]
Distance Theory / Tokyo May 4, 2004
Property of Quantum / Tokyo May 21, 2004                        
Mirror Theory / Tokyo June 5, 2004
Mirror Language / Tokyo June 10, 2004
Guarantee of Language / Tokyo June 12, 2004
Reversion Theory / Tokyo September 27, 2004

Tokyo August 31, 2008
Sekinan Research Field of Language







Energy Distance Theory
 
Note 3
Energy and Functional
 
TANAKA Akio


1
Riemannian manifold     (M, g) , (N, h)C class map u : MNTangent vector bundle of N     TNInduced vector bundle on M from TN     u-1TNTangent space of N     Tu(x)NCotangent vector bundle of M     TM*Map      du : TM*⊗ u-1TN    Section     duΓ(TM*⊗ u-1TN )2Norm     |du||du|2 =∑mi,j=1 nαβ=1 gijhαβ(u)(δuα/δxi)( δuβ/δxj)Energy density     e(u)(x) = 1/2  |du|2(x),  xMMeasure defined on from Riemannian metric g    μgEnergy     E(u) = e(u)dμg3is compact.Space of all u     . C(M, N)Functional     E : C(M, N) → R [Additional note]1 Vector bundle TM*⊗ u-1TN is compared with word.
Map du is compared with one time of word.
Norm |du| is compared with distance of tome.
Energy E(u) compared with energy of word.
Functional E is compared with function of word. 

[Reference]
Substantiality / Tokyo February 27, 2005
Substantiality of Language / Tokyo February 21, 2006
Stochastic Meaning Theory 4 / Energy of Language / Tokyo July 24, 2008 

Tokyo October 18 2008
Sekinan Research Field of Language






Floer Homology Language

TANAKA Akio

Note1
Potential of Language



¶ Prerequisite conditions
Note 6 Homology structure of Word

1
(Definition)
(Gromov-Witten potential)

2
(Theorem)
(Witten-Dijkggraaf-Verlinde-Verlinde equation)

3
(Theorem)
(Structure of Frobenius manifold)
Symplectic manifold (M, wM)
Poincaré duality < . , . >
Product <V1°V2, V3> = V1V2V3( )(M, wM) has structure of Frobenius manifold over convergent domain of Gromov-Witten potential.
4
(Theorem)
Mk,β (Q1, ..., Qk) = N(β) expresses Gromov-Witten potential.



[Image]
When Mk,β (Q1, ..., Qk) is identified with language, language has potential N(β).

[Reference]
Quantum Theory for language / Synopsis / Tokyo January 15, 2004 


First designed on <energy of language> at Tokyo April 29, 2009
Newly planned on further visibility at Tokyo June 16, 2009
Sekinan Research Field of language



 




Tokyo
30 April 2019
ENSILA

 



Read more: https://srfl-paper.webnode.com/news/energy-in-language-2008/#.XMl1FwJJwzs.blogger

Read more: https://srflnote.webnode.com/news/energy-in-language-2008/


Comments
* The email will not be published on the website.
I BUILT MY SITE FOR FREE USING